Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmacol Biochem Behav ; 231: 173632, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37690617

RESUMO

BACKGROUND: The co-use of nicotine and cannabis has been steadily rising in the United States. Rodent studies suggest that delta-9-tetrahydrocannabinol (THC) could increase addictive qualities of nicotine, but whether repeated THC exposure alters self-administration of nicotine has not been tested. We hypothesized that THC would increase the reinforcing effects of nicotine and alter nicotine intake. METHODS: Adult male and female Sprague-Dawley rats were treated with THC (0, 3, 30 mg/kg) daily for 14 days prior to and during training for intravenous self-administration of nicotine. Rats were allowed to self-administer nicotine for several weeks, then tested for sensitivity to nicotine dose through multiple determinations of a nicotine dose-effect curve with or without THC pretreatment. A separate set of rats were trained on fixed ratio responding for sucrose and assessed for THC effects on behavior. RESULTS: Post-session THC decreased nicotine self-administration in male and female rats throughout acquisition and maintenance and increased the latency to stable rates of nicotine intake during acquisition. Post-session THC shifted nicotine dose-effect curves downward, and pre-session THC suppressed responding at higher nicotine doses. Unlike nicotine, responding for sucrose was not affected by post-session THC. Pre-session THC decreased responding for sucrose, particularly for THC-naïve rats. CONCLUSIONS: Repeated post-session THC decreased nicotine-taking behaviors but did not alter sucrose responding. Thus, post-session THC may alter sensitivity to nicotine. Pre-session THC treatment decreased lever pressing in both sucrose and nicotine studies, indicating this effect was nonspecific. These studies show that THC modulates patterns of nicotine intake in rat models.


Assuntos
Dronabinol , Nicotina , Ratos , Masculino , Feminino , Animais , Nicotina/farmacologia , Dronabinol/farmacologia , Ratos Sprague-Dawley , Agonistas de Receptores de Canabinoides/farmacologia , Sacarose/farmacologia , Autoadministração , Relação Dose-Resposta a Droga , Condicionamento Operante
2.
Addict Neurosci ; 12022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36176476

RESUMO

Behavioral stress exposure increases the risk of drug-taking in individuals with substance use disorders by mechanisms involving the dynorphins, which are the endogenous neuropeptides for the kappa opioid receptor (KOR). KOR agonists have been shown to encode dysphoria, aversion, and changes in reward valuation, and kappa opioid antagonists are in clinical development for treating substance use disorders. In this study, we confirmed that KORs were expressed in dopaminergic neurons in the ventral tegmental area (VTA) of male C57BL6/J mice. Genetic ablation of KORs from dopamine neurons blocked the potentiating effects of repeated forced swim stress on cocaine conditioned place preference (CPP). KOR activation inhibited dopamine neuron GCaMP6m calcium activity in VTA during swim stress and caused a rebound enhancement during the period after stress exposure. Transient optogenetic inhibition of VTA dopamine neurons with AAV5-DIO-SwiChR was acutely aversive in a real time place preference assay and blunted cocaine CPP when inhibition was administered concurrently with cocaine conditioning. However, when inhibition preceded cocaine conditioning by 30 min, cocaine CPP was enhanced. Retrograde tracing with CAV2-DIO-ZsGreen identified a population of prodynorphinCre neurons in the dorsal raphe nucleus (DRN) projecting to the VTA. Optogenetic stimulation of dynorphinergic neurons within the DRN by Channelrhodopsin2 activated KOR in VTA and ablation of prodynorphin blocked stress potentiation of cocaine CPP. Together, these studies demonstrate the presence of a dynorphin/KOR midbrain circuit that projects from the DRN to VTA and is involved in altering the dynamic response of dopamine neuron activity to enhance drug reward learning.

3.
Neuropsychopharmacology ; 47(4): 891-901, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34564712

RESUMO

Stress-induced release of dynorphins (Dyn) activates kappa opioid receptors (KOR) in serotonergic neurons to produce dysphoria and potentiate drug reward; however, the circuit mechanisms responsible for this effect are not known. In male mice, we found that conditional deletion of KOR from Slc6a4 (SERT)-expressing neurons blocked stress-induced potentiation of cocaine conditioned place preference (CPP). Within the dorsal raphe nucleus (DRN), two overlapping populations of KOR-expressing neurons: Slc17a8 (VGluT3) and SERT, were distinguished functionally and anatomically. Optogenetic inhibition of these SERT+ neurons potentiated subsequent cocaine CPP, whereas optical inhibition of the VGluT3+ neurons blocked subsequent cocaine CPP. SERT+/VGluT3- expressing neurons were concentrated in the lateral aspect of the DRN. SERT projections from the DRN were observed in the medial nucleus accumbens (mNAc), but VGluT3 projections were not. Optical inhibition of SERT+ neurons produced place aversion, whereas optical stimulation of SERT+ terminals in the mNAc attenuated stress-induced increases in forced swim immobility and subsequent cocaine CPP. KOR neurons projecting to mNAc were confined to the lateral aspect of the DRN, and the principal source of dynorphinergic (Pdyn) afferents in the mNAc was from local neurons. Excision of Pdyn from the mNAc blocked stress-potentiation of cocaine CPP. Prior studies suggested that stress-induced dynorphin release within the mNAc activates KOR to potentiate cocaine preference by a reduction in 5-HT tone. Consistent with this hypothesis, a transient pharmacological blockade of mNAc 5-HT1B receptors potentiated subsequent cocaine CPP. 5-HT1B is known to be expressed on 5-HT terminals in NAc, and 5-HT1B transcript was also detected in Pdyn+, Adora2a+ and ChAT+ (markers for direct pathway, indirect pathway, and cholinergic interneurons, respectively). Following stress exposure, 5-HT1B transcript was selectively elevated in Pdyn+ cells of the mNAc. These findings suggest that Dyn/KOR regulates serotonin activation of 5HT1B receptors within the mNAc and dynamically controls stress response, affect, and drug reward.


Assuntos
Cocaína , Animais , Cocaína/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens , Receptores Opioides kappa/metabolismo , Serotonina/metabolismo
4.
Neuropsychopharmacology ; 46(13): 2330-2339, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34545197

RESUMO

Following repeated opioid use, some dependent individuals experience persistent cognitive deficits that contribute to relapse of drug-taking behaviors, and one component of this response may be mediated by the endogenous dynorphin/kappa opioid system in neocortex. In C57BL/6 male mice, we find that acute morphine withdrawal evokes dynorphin release in the medial prefrontal cortex (PFC) and disrupts cognitive function by activation of local kappa opioid receptors (KORs). Immunohistochemical analyses using a phospho-KOR antibody confirmed that both withdrawal-induced and optically evoked dynorphin release activated KOR in PFC. Using a genetically encoded sensor based on inert KOR (kLight1.2a), we revealed the in vivo dynamics of endogenous dynorphin release in the PFC. Local activation of KOR in PFC produced multi-phasic disruptions of memory processing in an operant-delayed alternation behavioral task, which manifest as reductions in response number and accuracy during early and late phases of an operant session. Local pretreatment in PFC with the selective KOR antagonist norbinaltorphimine (norBNI) blocked the disruptive effect of systemic KOR activation during both early and late phases of the session. The early, but not late phase disruption was blocked by viral excision of PFC KORs, suggesting an anatomically dissociable contribution of pre- and postsynaptic KORs. Naloxone-precipitated withdrawal in morphine-dependent mice or optical stimulation of pdynCre neurons using Channelrhodopsin-2 disrupted delayed alternation performance, and the dynorphin-induced effect was blocked by local norBNI. Our findings describe a mechanism for control of cortical function during opioid dependence and suggest that KOR antagonism could promote abstinence.


Assuntos
Analgésicos Opioides , Dinorfinas , Animais , Cognição , Dinorfinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Naltrexona , Córtex Pré-Frontal/metabolismo , Receptores Opioides kappa/metabolismo
5.
Neuropsychopharmacology ; 45(7): 1105-1114, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31812152

RESUMO

Chronic pain affects a significant percentage of the United States population, and available pain medications like opioids have drawbacks that make long-term use untenable. Cannabinoids show promise in the management of pain, but long-term treatment of pain with cannabinoids has been challenging to implement in preclinical models. We developed a voluntary, gelatin oral self-administration paradigm that allowed male and female mice to consume ∆9-tetrahydrocannabinol, cannabidiol, or morphine ad libitum. Mice stably consumed these gelatins over 3 weeks, with detectable serum levels. Using a real-time gelatin measurement system, we observed that mice consumed gelatin throughout the light and dark cycles, with animals consuming less THC-gelatin than the other gelatin groups. Consumption of all three gelatins reduced measures of allodynia in a chronic, neuropathic sciatic nerve injury model, but tolerance to morphine developed after 1 week while THC or CBD reduced allodynia over three weeks. Hyperalgesia gradually developed after sciatic nerve injury, and by the last day of testing, THC significantly reduced hyperalgesia, with a trend effect of CBD, and no effect of morphine. Mouse vocalizations were recorded throughout the experiment, and mice showed a large increase in ultrasonic, broadband clicks after sciatic nerve injury, which was reversed by THC, CBD, and morphine. This study demonstrates that mice voluntarily consume both cannabinoids and opioids via gelatin, and that cannabinoids provide long-term relief of chronic pain states. In addition, ultrasonic clicks may objectively represent mouse pain status and could be integrated into future pain models.


Assuntos
Canabinoides/farmacologia , Hiperalgesia/prevenção & controle , Neuralgia/prevenção & controle , Administração Oral , Animais , Canabidiol/farmacologia , Canabinoides/administração & dosagem , Dronabinol/farmacologia , Tolerância a Medicamentos , Feminino , Hiperalgesia/complicações , Masculino , Camundongos , Morfina/farmacologia , Neuralgia/complicações , Nervo Isquiático/lesões , Autoadministração , Vocalização Animal/efeitos dos fármacos
6.
J Neurosci ; 38(37): 8031-8043, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30076211

RESUMO

Activation of κ opioid receptors (KORs) produces analgesia and aversion via distinct intracellular signaling pathways, but whether G protein-biased KOR agonists can be designed to have clinical utility will depend on a better understanding of the signaling mechanisms involved. We found that KOR activation produced conditioned place aversion and potentiated CPP for cocaine in male and female C57BL/6N mice. Consistent with this, males and females both showed arrestin-mediated increases in phospho-p38 MAPK following KOR activation. Unlike in males, however, KOR activation had inconsistent analgesic effects in females and KOR increased Gßγ-mediated ERK phosphorylation in males, but not females. KOR desensitization was not responsible for the lack of response in females because neither Grk3 nor Pdyn gene knock-out enhanced analgesia. Instead, responsiveness was estrous cycle dependent because KOR analgesia was evident during low estrogen phases of the cycle and in ovariectomized (OVX) females. Estradiol treatment of OVX females suppressed KOR-mediated analgesia, demonstrating that estradiol was sufficient to blunt Gßγ-mediated KOR signals. G protein-coupled receptor kinase 2 (GRK2) is known to regulate ERK activation, and we found that the inhibitory, phosphorylated form of GRK2 was significantly higher in intact females. GRK2/3 inhibition by CMPD101 increased KOR stimulation of phospho-ERK in females, decreased sex differences in KOR-mediated inhibition of dopamine release, and enhanced mu opioid receptor and KOR-mediated analgesia in females. In OVX females, estradiol increased the association between GRK2 and Gßγ. These studies suggest that estradiol, through increased phosphorylation of GRK2 and possible sequestration of Gßγ by GRK2, blunts G protein-mediated signals.SIGNIFICANCE STATEMENT Chronic pain disorders are more prevalent in females than males, but opioid receptor agonists show inconsistent analgesic efficacy in females. κ opioid receptor (KOR) agonists have been tested in clinical trials for treating pain disorders based on their analgesic properties and low addictive potential. However, the molecular mechanisms underlying sex differences in KOR actions were previously unknown. Our studies identify an intracellular mechanism involving estradiol regulation of G protein-coupled receptor kinase 2 that is responsible for sexually dimorphic analgesic responses following opioid receptor activation. Understanding this mechanism will be critical for developing effective nonaddictive opioid analgesics for use in women and characterizing sexually dimorphic effects in other inhibitory G protein-coupled receptor signaling responses.


Assuntos
Aprendizagem da Esquiva/fisiologia , Condicionamento Operante/fisiologia , Estradiol/farmacologia , Receptores Opioides kappa/metabolismo , (trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/farmacologia , Analgesia , Analgésicos Opioides/farmacologia , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Cocaína/farmacologia , Condicionamento Operante/efeitos dos fármacos , Ciclo Estral , Feminino , Masculino , Camundongos , Morfina/farmacologia , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Entorpecentes/farmacologia , Ovariectomia , Fosforilação , Receptores Opioides kappa/agonistas , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
Neuropsychopharmacology ; 43(2): 362-372, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28649993

RESUMO

The dynorphin/κ-opioid receptor (KOR) system has been previously implicated in the regulation of cognition, but the neural circuitry and molecular mechanisms underlying KOR-mediated cognitive disruption are unknown. Here, we used an operational test of cognition involving timing and behavioral inhibition and found that systemic KOR activation impairs performance of male and female C57BL/6 mice in the differential reinforcement of low response rate (DRL) task. Systemic KOR antagonism also blocked stress-induced disruptions of DRL performance. KOR activation increased 'bursts' of incorrect responses in the DRL task and increased marble burying, suggesting that the observed disruptions in DRL performance may be attributed to KOR-induced increases in compulsive behavior. Local inactivation of KOR by injection of the long-acting antagonist nor-BNI in the ventral tegmental area (VTA), but not the infralimbic prefrontal cortex (PFC) or dorsal raphe nucleus (DRN), prevented disruption of DRL performance caused by systemic KOR activation. Cre-dependent genetic excision of KOR from dopaminergic, but not serotonergic neurons, also blocked KOR-mediated disruption of DRL performance. At the molecular level, we found that these disruptive effects did not require arrestin-dependent signaling, because neither global deletion of G-protein receptor kinase 3 (GRK3) nor cell-specific deletion of GRK3/arrestin-dependent p38α MAPK from dopamine neurons blocked KOR-mediated DRL disruptions. We then showed that nalfurafine, a clinically available G-biased KOR agonist, could also produce DRL disruptions. Together, these studies demonstrate that KOR activation in VTA dopamine neurons disrupts behavioral inhibition in a GRK3/arrestin-independent manner and suggests that KOR antagonists could be beneficial for decreasing stress-induced compulsive behaviors.


Assuntos
Comportamento Animal/fisiologia , Comportamento Compulsivo/fisiopatologia , Neurônios Dopaminérgicos/metabolismo , Núcleo Dorsal da Rafe/efeitos dos fármacos , Inibição Psicológica , Antagonistas de Entorpecentes/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Receptores Opioides kappa/metabolismo , Reforço Psicológico , Estresse Psicológico/complicações , Área Tegmentar Ventral/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Compulsivo/tratamento farmacológico , Comportamento Compulsivo/etiologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Morfinanos/farmacologia , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Antagonistas de Entorpecentes/administração & dosagem , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/antagonistas & inibidores , Compostos de Espiro/farmacologia
8.
Nat Commun ; 8(1): 743, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28963507

RESUMO

Inactivation of opioid receptors limits the therapeutic efficacy of morphine-like analgesics and mediates the long duration of kappa opioid antidepressants by an uncharacterized, arrestin-independent mechanism. Here we use an iterative, discovery-based proteomic approach to show that following opioid administration, peroxiredoxin 6 (PRDX6) is recruited to the opioid receptor complex by c-Jun N-terminal kinase (JNK) phosphorylation. PRDX6 activation generates reactive oxygen species via NADPH oxidase, reducing the palmitoylation of receptor-associated Gαi in a JNK-dependent manner. Selective inhibition of PRDX6 blocks Gαi depalmitoylation, prevents the enhanced receptor G-protein association and blocks acute analgesic tolerance to morphine and kappa opioid receptor inactivation in vivo. Opioid stimulation of JNK also inactivates dopamine D2 receptors in a PRDX6-dependent manner. We show that the loss of this lipid modification distorts the receptor G-protein association, thereby preventing agonist-induced guanine nucleotide exchange. These findings establish JNK-dependent PRDX6 recruitment and oxidation-induced Gαi depalmitoylation as an additional mechanism of Gαi-G-protein-coupled receptor inactivation.Opioid receptors are important modulators of nociceptive pain. Here the authors show that opioid receptor activation recruits peroxiredoxin 6 (PRDX6) to the receptor-Gαi complex by c-Jun N-terminal kinase, resulting in Gαi depalmitoylation and enhanced receptor-Gαi association.


Assuntos
Analgésicos Opioides/farmacologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/efeitos dos fármacos , Peroxirredoxina VI/efeitos dos fármacos , Receptores de Dopamina D2/efeitos dos fármacos , Animais , Benzenoacetamidas/farmacologia , Tolerância a Medicamentos , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Fentanila/farmacologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Morfina/farmacologia , NADPH Oxidases/efeitos dos fármacos , NADPH Oxidases/metabolismo , Peroxirredoxina VI/metabolismo , Fosforilação , Pirrolidinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores Opioides/efeitos dos fármacos , Receptores Opioides/metabolismo , Receptores Opioides kappa/efeitos dos fármacos , Receptores Opioides kappa/metabolismo , Receptores Opioides mu/efeitos dos fármacos , Receptores Opioides mu/metabolismo
9.
Neurobiol Learn Mem ; 133: 265-273, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27423521

RESUMO

Dopamine signaling is involved in a variety of neurobiological processes that contribute to learning and memory. D1-like dopamine receptors (including D1 and D5 receptors) are thought to be involved in memory and reward processes, but pharmacological approaches have been limited in their ability to distinguish between D1 and D5 receptors. Here, we examine the effects of a specific knockout of D1 receptors in associative learning tasks involving aversive (shock) or appetitive (cocaine) unconditioned stimuli. We find that D1 knockout mice show similar levels of cued and contextual fear conditioning to WT controls following conditioning protocols involving one, two, or four shocks. D1 knockout mice show increased generalization of fear conditioning and extinction across contexts, revealed as increased freezing to a novel context following conditioning and decreased freezing to an extinguished cue during a contextual renewal test. Further, D1 knockout mice show mild enhancements in extinction following an injection of SKF81297, a D1/D5 receptor agonist, suggesting a role for D5 receptors in extinction enhancements induced by nonspecific pharmacological agonists. Finally, although D1 knockout mice show decreased locomotion induced by cocaine, they are able to form a cocaine-induced conditioned place preference. We discuss these findings in terms of the role of dopamine D1 receptors in general learning and memory processes.


Assuntos
Comportamento Animal/fisiologia , Condicionamento Clássico/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Generalização Psicológica/fisiologia , Receptores de Dopamina D1/fisiologia , Receptores de Dopamina D5/fisiologia , Recompensa , Animais , Comportamento Animal/efeitos dos fármacos , Benzazepinas/administração & dosagem , Benzazepinas/farmacologia , Cocaína/administração & dosagem , Cocaína/farmacologia , Agonistas de Dopamina/administração & dosagem , Agonistas de Dopamina/farmacologia , Inibidores da Captação de Dopamina/administração & dosagem , Inibidores da Captação de Dopamina/farmacologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D5/agonistas
10.
Neuropsychopharmacology ; 41(8): 2072-81, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26763483

RESUMO

Dopamine is critical for many processes that drive learning and memory, including motivation, prediction error, incentive salience, memory consolidation, and response output. Theories of dopamine's function in these processes have, for the most part, been developed from behavioral approaches that examine learning mechanisms in appetitive tasks. A parallel and growing literature indicates that dopamine signaling is involved in consolidation of memories into stable representations in aversive tasks such as fear conditioning. Relatively little is known about how dopamine may modulate memories that form during extinction, when organisms learn that the relation between previously associated events is severed. We investigated whether fear and reward extinction share common mechanisms that could be enhanced with dopamine D1/5 receptor activation. Pharmacological activation of dopamine D1/5 receptors (with SKF 81297) enhanced extinction of both cued and contextual fear. These effects also occurred in the extinction of cocaine-induced conditioned place preference, suggesting that the observed effects on extinction were not specific to a particular type of procedure (aversive or appetitive). A cAMP/PKA biased D1 agonist (SKF 83959) did not affect fear extinction, whereas a broadly efficacious D1 agonist (SKF 83822) promoted fear extinction. Together, these findings show that dopamine D1/5 receptor activation is a target for the enhancement of fear or reward extinction.


Assuntos
Extinção Psicológica/fisiologia , Medo/fisiologia , Receptores de Dopamina D1/fisiologia , Receptores de Dopamina D5/fisiologia , Recompensa , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/administração & dosagem , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/análogos & derivados , Animais , Benzazepinas/administração & dosagem , Cocaína/administração & dosagem , Condicionamento Clássico/efeitos dos fármacos , AMP Cíclico/metabolismo , Extinção Psicológica/efeitos dos fármacos , Medo/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D5/agonistas , beta-Arrestinas/metabolismo
11.
Neurobiol Learn Mem ; 108: 65-77, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24269353

RESUMO

Research on dopamine lies at the intersection of sophisticated theoretical and neurobiological approaches to learning and memory. Dopamine has been shown to be critical for many processes that drive learning and memory, including motivation, prediction error, incentive salience, memory consolidation, and response output. Theories of dopamine's function in these processes have, for the most part, been developed from behavioral approaches that examine learning mechanisms in reward-related tasks. A parallel and growing literature indicates that dopamine is involved in fear conditioning and extinction. These studies are consistent with long-standing ideas about appetitive-aversive interactions in learning theory and they speak to the general nature of cellular and molecular processes that underlie behavior. We review the behavioral and neurobiological literature showing a role for dopamine in fear conditioning and extinction. At a cellular level, we review dopamine signaling and receptor pharmacology, cellular and molecular events that follow dopamine receptor activation, and brain systems in which dopamine functions. At a behavioral level, we describe theories of learning and dopamine function that could describe the fundamental rules underlying how dopamine modulates different aspects of learning and memory processes.


Assuntos
Encéfalo/fisiologia , Condicionamento Psicológico/fisiologia , Dopamina/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Recompensa , Animais , Humanos , Aprendizagem/fisiologia , Camundongos , Ratos
12.
Learn Mem ; 19(2): 67-72, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22251891

RESUMO

Methylphenidate (MPH, Ritalin) is a norepinephrine and dopamine transporter blocker that is widely used in humans for treatment of attention deficit disorder and narcolepsy. Although there is some evidence that targeted microinjections of MPH may enhance fear acquisition, little is known about the effect of MPH on fear extinction. Here, we show that MPH, administered before or immediately following extinction of contextual fear, will enhance extinction retention in C57BL/6 mice. Animals that received MPH (2.5-10 mg/kg) before an extinction session showed decreased freezing response during extinction, and the effect of the 10 mg/kg dose on freezing persisted to the next day. When MPH (2.5-40 mg/kg) was administered immediately following an extinction session, mice that received MPH showed dose-dependent decreases in freezing during subsequent tests. MPH administered immediately after a 3-min extinction session or 4 h following the first extinction session did not cause significant differences in freezing. Together, these findings demonstrate that MPH can enhance extinction of fear and that this effect is sensitive to dose, time of injection, and duration of the extinction session. Because MPH is widely used in clinical treatments, these experiments suggest that the drug could be used in combination with behavioral therapies for patients with fear disorders.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Extinção Psicológica/efeitos dos fármacos , Medo/efeitos dos fármacos , Metilfenidato/farmacologia , Animais , Condicionamento Clássico/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
13.
Brain Res ; 1422: 20-31, 2011 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-21974861

RESUMO

We have previously demonstrated that selectively-bred High (bHR) and Low (bLR) novelty-seeking rats exhibit agonistic differences, with bHRs acting in a highly aggressive manner when facing homecage intrusion. In order to discover the specific neuronal pathways responsible for bHRs' high levels of aggression, the present study compared c-fos mRNA expression in several forebrain regions of bHR/bLR males following this experience. bHR/bLR males were housed with female rats for 2 weeks, and then the females were replaced with a male intruder for 10 min. bHR/bLR residents were subsequently sacrificed by rapid decapitation, and their brains were removed and processed for c-fos in situ hybridization. Intrusion elicited robust c-fos mRNA expression in both phenotypes throughout the forebrain, including the septum, amygdala, hippocampus, cingulate cortex, and the hypothalamus. However, bHRs and bLRs exhibited distinct activation patterns in select areas. Compared to bHR rats, bLRs expressed greater c-fos in the lateral septum and within multiple hypothalamic nuclei, while bHRs showed greater activation in the arcuate hypothalamic nucleus and in the hippocampus. No bHR/bLR differences in c-fos expression were detected in the amygdala, cortical regions, and striatum. We also found divergent 5-HT1A receptor mRNA expression within some of these same areas, with bLRs having greater 5-HT1A, but not 5-HT1B, receptor mRNA levels in the septum, hippocampus and cingulate cortex. These findings, together with our earlier work, suggest that bHRs exhibit altered serotonergic functioning within select circuits during an aggressive encounter.


Assuntos
Agressão/fisiologia , Comportamento Animal/fisiologia , Comportamento Exploratório/fisiologia , Prosencéfalo/fisiologia , Comportamento Social , Animais , Feminino , Masculino , Prosencéfalo/anatomia & histologia , Ratos , Ratos Endogâmicos , Ratos Sprague-Dawley
14.
Brain Res ; 1419: 34-45, 2011 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-21925645

RESUMO

Aggression frequently coincides with specific dimensions of emotionality, such as impulsivity, risk-taking, and drug abuse. Serotonergic (5-HTergic) neurotransmission contributes to the regulation of numerous neurobiological functions, and is thought to play a key role in modulating aggressive responses. The current study uses selectively-bred High (bHR) and Low (bLR) Responder rats that exhibit differences in emotionality and behavioral control, with bHRs exhibiting heightened novelty-induced exploration, impulsivity, and increased sensitivity to drugs of abuse, and with bLRs characterized by exaggerated depressive- and anxiety-like behaviors. Based on this behavioral profile we hypothesized that bHR rats exhibit increased aggression along with changes in testosterone and corticosterone secretion characteristic of aggression, and that these changes are accompanied by alterations in the expression of key genes that regulate 5-HTergic neurotransmission (Tph2 and Sert) as well as in the activation of 5-HTergic cell groups following aggressive encounter. Our data demonstrate that when compared to bLR rats, bHRs express increased baseline Tph2 and Sert in select brainstem nuclei, and when tested on the resident-intruder test they exhibited: 1) increased aggressive behavior; 2) potentiated corticosterone and testosterone secretion; and 3) diminished intrusion-induced c-fos expression in select 5-HTergic brainstem cell groups. The most prominent gene expression differences occurred in the B9 cell group, pontomesencephalic reticular formation, median raphe, and the gigantocellular nucleus pars α. These data are consistent with the notion that altered 5-HT neurotransmission contributes to bHRs' heightened aggression. Furthermore, they indicate that a specific subset of brainstem 5-HTergic cell groups contributes to the regulation of intrusion-elicited behavioral responses.


Assuntos
Agressão/fisiologia , Comportamento Exploratório/fisiologia , Predisposição Genética para Doença/genética , Transtornos Mentais/genética , Núcleos da Rafe/metabolismo , Serotonina/fisiologia , Animais , Modelos Animais de Doenças , Masculino , Transtornos Mentais/metabolismo , Transtornos Mentais/fisiopatologia , Valor Preditivo dos Testes , Núcleos da Rafe/fisiopatologia , Ratos , Ratos Endogâmicos , Ratos Sprague-Dawley
15.
Horm Behav ; 57(4-5): 463-73, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20156440

RESUMO

Selective breeding of rats exhibiting differences in novelty-induced locomotion revealed that this trait predicts several differences in emotional behavior. Bred High Responders (bHRs) show exaggerated novelty-induced locomotion, aggression, and psychostimulant self-administration, compared to bred Low Responders (bLRs), which are inhibited and prone to anxiety- and depression-like behavior. Our breeding studies highlight the heritability of the bHR/bLR phenotypes, although environmental factors like maternal care also shape some aspects of these traits. We previously reported that HR vs. LR mothers act differently, but it was unclear whether their behaviors were genetically driven or influenced by their pups. The present study (a) used cross-fostering to evaluate whether the bHR/bLR maternal styles are inherent to mothers and/or are modulated by pups; and (b) assessed oxytocin and oxytocin receptor mRNA expression to examine possible underpinnings of bHR/bLR maternal differences. While bHR dams exhibited less maternal behavior than bLRs during the dark/active phase, they were very attentive to pups during the light phase, spending greater time passive nursing and in contact with pups compared to bLRs. Cross-fostering only subtly changed bHR and bLR dams' behavior, suggesting that their distinct maternal styles are largely inherent to the mothers. We also found elevated oxytocin mRNA levels in the supraoptic nucleus of the hypothalamus in bHR versus bLR dams, which may play some role in driving their behavior differences. Overall these studies shed light on the interplay between the genetics of mothers and infants in driving differences in maternal style.


Assuntos
Meio Ambiente , Comportamento Exploratório , Comportamento Materno/fisiologia , Neurônios/fisiologia , Animais , Química Encefálica/fisiologia , Feminino , Expressão Gênica/genética , Expressão Gênica/fisiologia , Asseio Animal , Hipotálamo Anterior/metabolismo , Hibridização In Situ , Ocitocina/biossíntese , Ocitocina/genética , Fenótipo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Receptores de Ocitocina/biossíntese , Receptores de Ocitocina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...